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Al-alapu megkozelitések a technikai
elemzésben: Indikatorok és a gépi
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OSSZEFOGLALAS

A kutatds soran hagyomanyos technikai indikatorokat fogunk
Osszevetni mesterséges intelligencia alapi modellekkel. Az in-
dikatorokat tobb évtizede ismeri a befektetSi k6zosség, azon-
ban a technolégiai fejlédésnek hadla, a gépi tanuldsi moédszerek
egyre fontosabb szerephez jutnak. A kutatas f6 célja meghata-
rozni, hogy melyik megkozelitéssel lehet nagyobb profitot el-
érni a részvénypiacon. Ehhez harom indikator és mesterséges
intelligencia algoritmus teljesitményét vizsgdltuk meg 6t darab
amerikai részvény historikus adatain, 2017 janudr 1. és 2024
december 31. kozott, tovabba a gépi tanuldsi algoritmusok az
1996. januar 1.-t61 2017. december 31.-ig tart6 idSszak adatai-
val lettek betanitva. Az eredményekbé] lathato, hogy a Linearis
Regresszié generdlta a legnagyobb profitot az Apple részvény
esetében, azonban érdemes figyelembe venni az ezzel jar6 koc-
kazatot és a nagyfoku volatilitast.
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BEVEZETES

A pénzugyi piacok kereskedésének torténete hosszi multra te-
kint vissza, és mar a kezdetektdl fogva probaltak az emberek az
arfolyammozgasokat megjosolni (When-Chuan, 2010). A kez-
detleges megkozelitések egyre fejlettebbé valtak, kdszonhetGen
az elmult évtizedek informadcios forradalmdnak. A technikai
fejlédés egyik jelentSs eredménye a mesterséges intelligencia
(AI) megjelenése, amely a kutatas kozponti témdja. Az Al ala-
pu rendszerek nagy mennyiségi adatot gyorsan és hatékonyan
képesek feldolgozni, valamint olyan komplex mintdzatokat fel-
ismerni, amelyeket az emberi szem és a hagyomanyos megkdze-
litési modszerek nem tudnak azonositani.

Fontos megjegyezni, hogy a technikai elemzés hagyomanyo-
san indikdtorokra éptl, azonban az utobbi években a mester-
séges intelligencia egyre nagyobb szerepet kapott a t6zsdei ke-
reskedésben. (Bartram, 2020) Ez a tanulmdny harom Al-alapt
modell és harom hagyomanyos technikai indikator teljesitmé-
nyét hasonlitja 6ssze a részvénypiacon.
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Technikai elemzés

A technikai elemzés kétségteleniil nagy népszertiségnek Or-
vend. Elsésorban annak koszonhetd, hogy ez a megkozeli-
tés nem foglalkozik az 6sszes lehetséges gazdasagi, politikali,
vagy vallalati faktorral, ami befolyasolhatja egy részvény arfo-
lyamat. Igy az elemz6 sok id6t és eréforrast tud megspérolni
(Kirkpatrick, 2007). Lényegét tekintve a jovébeli arfolyammoz-
gasok meghatdrozasara hasznalatos. Ehhez multbéli adatokra,
jellemzéen az arra és a volumenre van sziikség. Az elemzések
soran fontos szerepe van a matematikai képletek alapjan kisza-
mithat6 indikatoroknak és a grafikonrdl leolvashato kulonféle
alakzatoknak (Park, 2004).

Az elmélet azt mondja, hogy minden befolydsol6 tényezd
automatikusan beépiil a részvény araba. Ezzel el is érkeztink
a technikai elemzés elsé alapelvéhez, mely szerint a piac min-
dent diszkontal. A technikai elemzd6k szerint ez a legfontosabb
mutat6, amelyre sziikségiink lehet az elemzések elvégzéséhez.
Tovabba az arfolyammozgasok vizsgalataval nagyon egyszert-
en megallapithatjuk a kereslet és kindlat alakuldsat: ha a keres-
let meghaladja a kindlatot, akkor az arak emelkednek, hasonlo-
képpen, ha nagyobb a kinalat a piacon, mint a kereslet, akkor
az arak csokkennek. Minden technikai elemzé egyetért abban,
hogy ezeket a mozgasokat valamilyen gazdasagi tényezé okoz-
za, azonban 6k maguk csak az ezt tiikr6z6 grafikonokkal foglal-
koznak (Murphy, 1999).

A technikai elemzésnek viszonylag sok kritikusa van, akik a
vizsgalat soran felmeriilé nagyfoku szubjektivitast kifogasol-
jak (Scott, 2016). Burton Malkiel kozgazdasz professzor szerint
sok logikai érv sz6l a technikai elemzés ellen. Ugy véli, hogy
az események tul gyorsan torténnek ahhoz, hogy a diagram-
mok olvasasaval le tudjuk Sket kovetni. Mire vételi jelzést ka-
punk, mar til késG és ugyanez vonatkozik az eladasi jelzésekre
is. Tovabba felmertil a kérdés, ha mindenki ugyanazon séma
alapjan kereskedik, hogyan tudna az egyik fél a masik folé ke-
rekedni (Malkiel, 2007). Mindazonadltal nem hagyhatjuk figyel-
men kiviil azokat az empirikus tanulmanyokat, melyek szerint
a technikai elemzéssel lehetséges nyereséget termelni (Chopra,
1991; Brock, 1992).

Mesterséges intelligencia

A mesterséges intelligencia szerepe jelentGsen nétt minden
iparagban. A pénzugyi szektorban alkalmazott Al modellek
tobbsége gépi tanulasi kategoridba sorolhat6, amelynek beta-
nitdsa emberi feligyelet igényel és statisztikai technikdkon ala-
pulnak (Bartram, 2020). A befektet6k az Al-nak koszonhet-
en megalapozottabb dontéseket képesek hozni, ami magasabb
profitot termel, valamint segit csokkenti a kockdzatot. A keres-
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kedési algoritmusok gépi tanuldsi technikakkal kiegészitve,
ezek az algoritmusok képesek pénziigyi jelentések, zaréarak,
ujsagcikkek, kozgazdasagi mutatok stb. valos ideji elemzésére.
Az Al-nak nem jelent problémat a bonyolult 6sszefuggések fel-
ismerése, ezdaltal sokkal pontosabb elérejelzéseket készitenek,
valamint az emberi hibat minimalizalja. Mindazonaltal tigyelni
kell a tanulasi fazisban betaplalt adatok mindségére ugyanis hi-
bas, rossz mingségi adatokkal téves kovetkeztetésre jut az algo-
ritmus (Chowdhury, 2019).

ANYAG ES MODSZERTAN

Indikdtorok

A kutatasban hasznalt indikdtorok elsé csoportja az ugyneve-
zett trendkovetd indikdtorok, melyeknek elsGdleges feladata a
trendek eldrejelzése. Egyik nagy hatranyuk, hogy jellegiikb6l
ad6doan késéi jelzést adnak a vételi és eladasi poziciokhoz.
A harom leggyakoribb mozgéatlag: az egyszerd mozgoatlag
(SMA), az exponencialis mozgoatlag (EMA) és a sulyozott moz-
gbatlag (WMA). Annak ellenére, hogy az SMA az egyik legegy-
szertbb indikator, elég nagy népszertiségnek 6rvend a kereske-
dék korében (Toth, 2023). Szamitdasa nagyon egyszert, ahogy
az (1) képlet alapjan lathat6 a vizsgalt idészak napi arfolyamait
Osszeadjuk majd elosztjuk az eltelt napok (n) szamaval.

X7 Zaré ar
SMA = T (1)

A gyakorlatban ugy miikodik, hogyha az arfolyam a mozgéat-
lagot alulr6l metszi akkor vételi jelzést kapunk, ha felilrél, ak-
kor pedig eladasit. Minél hosszabb idészakra alkalmazzuk, an-
nal pontosabb jelzéseket kapunk (Téth., 2023).

A projekt sordan alkalmazott masik indikator az ugynevezett
MACD. Ez egy oscillator tipusi mutato, vagyis egy kozponti vo-
nal altal fluktudl. Hirom mozgéatlag divergalé és konvergalo
mozgasat adja vissza, azonban a grafikonon csak két vonalat db-
razolunk ezek koziil. Az egyik vonal az MACD vonal, melynek
meghatdrozdsa altaldban egy 26 napos, valamint egy 12 napos
exponencidlisan sulyozott mozgéatlag kiilonbsége. A masik az
uagynevezett szignal vonal, ami nem mads, mint az MACD vonal 9
napos exponencialisan stlyozott mozgoatlaga. Miikodésének a
lényege a kovetkezs: ha az MACD a szignalvonal ald esik akkor
azt egy eladasi jelzésként kell értelmezni, ha pedig az MACD
alulrol attori a szignal vonalat, akkor az belépési pontot jelent
(Kecskeméti, 2006).

Végul a harmadik alkalmazott indikator a Momentum.
Elsésorban az arfolyam valtozasinak a mértékét mutatja egy
meghatdrozott idéintervallum alatt. Lényege, hogy a mai drat
hasonlitjuk egy korabbi arhoz (Achelis, 2013). Az indikator kal-
kuldciojat az alabbi (2) képlet alapjan lehet elvégezni.

Momentum = (Zardar — N nappla ezelbtti Zarodar)

Zaroar — N nappal ezelotti Zarodar

Momentum meértéke %: —
N nappal ezelbtti Zardar

(2)

Szamitdsa nagyon egyszeri, a mai dtlagarbol kivonjuk a moz-
gobatlagot (a projektben ez 14 nap), és ezt kiilonbséget osztani
kell a vdlasztott mozgoatlaggal, végill meg kell szorozni 100-
al. A grafikonon fel kell venni egy koézponti viszonyitdsi pontot
melynek az értéke 100. A 10-15%-os elmozdulds egy esetleges
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trendvaltozas bekovetkeztét jelezheti. A géorbe mélypontjat vé-
teli jelként kell értelmezni, ebbdl kifolyolag a cstcsot pedig el-
adasi pontként (Kecskeméti, 2006).

Linedris Regresszio

A linedris regresszi6 egy alapvetd és gyakran hasznalt felugyelt
gépi tanuldsi algoritmus. Lényege, hogy x bemeneti valtozo
alapjan predikciot készitsen a kimeneti, mas széval y célvaltozo-
ra. A bemeneti valtoz6 kapcsolatban all a kimeneti valtozéval,
tehat ha az x értéke modosul, annak hatdsa lesz az y valtozora.
Regresszios modell hasznalata soran a célunk, hogy megtalal-
juk azt az egyenest, amelyre legjobban illeszkednek a kimene-
ti valtozok (Bruce, 2020). Alabb a linedris regresszio képlete
alabb lathato.

Y=0,+0X

— b, = konstans, az a pont ahol

— b; = aregresszios vonal meredeksége

— X=bemeneti valtozo (fuggetlen valtozo)
— Y= kimeneti valtoz6 (fliggd valtozo)

Az adatok nagyrésze dltalaban nem esik ra a regresszios vo-
nalra, igy hibak keletkeznek (¢). Ahhoz, hogy megkapjuk a leg-
jobban illeszkedS egyenest, meg kell taldlnunk azokat a b, és
b; értékeket, melyeknél a hibak a legkisebbek. Mdssz6val mini-
malizalnunk kell a modell illeszkedését mutato rezidudlis négy-
zetdsszeget. Ennek kiszamitasahoz a legkisebb négyzetek mod-
szerét (OLS) haszndljuk (Hunyadi, 2019). A kalkuldci6é soran
hasznalt képletek és Osszefliggések:

n

9= Ze? =i(n ~a = i(}’f‘ bo=bix)®
i=1 =1

i=1

- Xd.d,
s b 3)

by= y—b,%
n = ¥ 1 )
Amikor értékelni akarjuk a modelliink pontossagat, az egyik
legfontosabb tényezdé a maradvanytagok négyzetdsszege. Ezt az
SSE (Sum of Squares of the Errors) mutatéval szoktuk kifejez-
ni. Minél kisebb az SSE értéke, annal jobban illeszkednek a ki-
meneti valtozok a regresszios egyenesre (Hunyadi, 2019).

n

SSE = Zef

i=1 (7)

Ridge Regresszio

A linearis regressziot kilonféle modszerekkel optimalizalhat-
juk. Az egyik ilyen megoldas az L2 regularizaci6é alkalmazasa,
amit Ridge Regresszionak neveziink. Ez a megkozelités csok-
kenti azoknak az egytutthatoknak az értékét, amelyek a linea-
ris modellt eltéritik, ezaltal elGsegiti a regresszi6 altalanositasi
képességének a novekedését (Mueller, 2024). Alabb lathat6 a
modositott OLS metédus, amelyet L2 regularizaciéval kibévi-
tettiink.
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Z(yf— R —H.Z 2 = SSE + AZ b2
i=1 i=1 i=1 (8)

— A = regularizdciés paraméter

A A paraméterrel tudjuk szabdlyozni a biintetési tag mértékét,
amelyet gyakran hivnak zsugoritasi tényezének is. Amennyiben
A = 0, a biintetési tagnak nincs jelentSsége. Fontos kiemelni,
hogy a biintetési tényez6 csakis a b;... b, paramétekre vonatko-
zik, tehdt a b, viltozatlan marad (James, 2013)

Long Short Term Memory (LSTM)

Az LSTM vagy masnéven Hosszu-Rovid Tava Memoria a mély,
visszatérd neuralis hal6zatok (RNN) egyik csoportja. Lényeges
tulajdonsdga, hogy képes legyen hosszutavon kiilonb6zé ada-
tok tdrolasara. Miutan ezek az adatok felhaszndldsra kertil-
tek, az algoritmus szelektalja, masszoval ,elfelejti” Gket. Fontos
hangsulyozni, hogy ez a folyamat emberi beavatkozas nélkiil
torténik, vagyis a hal6zat sajat maga tanulja meg ezen dontések
meghozatalat (Goodfellow, 2016).

Az LSTM egy 0Osszetett rendszer, amely kiillonféle memoria
blokkokbal épul fel. Ezek a memoria blokkok harom egységbdl
allnak: bemeneti kapu, kimeneti kapu, felejté kapu. A hosszu
tava memoriat cellaallapotnak (cell state) is nevezik. A felej-
tékapu, f{t:] meghatdrozza, hogy a cellaallapotbo6l mely ada-
tokat kell szelektalni. A bemeneti kapu, I'{t] azt szabalyozza,
hogy mely informaciokat kell hozzdadni a hosszu tava allapot-
hoz, mig a kimeneti kapu, U‘{t}, azért felel, hogy az aktudlis
idépillanatban mely adatokat kell elGallitani. Az LSTM cella
felénitését az 1. abra mutatja be, ahol x{t] az aktualis input,
C(t) és C(t — 1) nedig » memériacella aktudlis és el6z6 al-
lapotat jelolik. A B(t) és h(t — 1) az aktudlis és el6z6 rejtett
allapotokat mutatjak (Diniz, 2024).

C(t=1) X - ‘ c(e)
tanh
1 ‘
ity N — i)
z o(x)’
w0 §
L . L
tanh
h(t - 1) 1

x(t)

1. abra: LSTM cella vaza.
Forras: (Diniz, 2024)

Mintavétel

A vizsgdlat soran 6t részvény historikus adatait hasznaltuk fel.
Ezeket az adatokat a Yahoo Finance API-n keresztil értiik el.
Emiatt nem sziikséges a fdjlokat letolteni majd késébb beim-
portalni, hanem kozvetleniil a kédszerkesztébe érkeznek az
adatok. A felhasznalt részvények rovid osszefoglaléjat az 1. tab-
lazat tartalmazza.

CIKKEK, TANULMANYOK

1. tablazat: A vizsgalt részvények adatai

gf’?szférz; Cégnév Szektor
AAPL Apple Inc. IT
wu [ e
MSFT Microsoft Corporation IT
F Ford Motor Company Jarmdipar
BA The Boeing Company Repiil6gépipar

Forrds: Sajat szerkesztés

Az elemzést Python programozasi nyelvvel hajtottuk végre.
Avalasztast azindokolta, hogy a Python olyan magas szinvonala
konyvtarakkal rendelkezik, mint a Pandas, NumPy, Matplotlib,
Scikit-learn, Pytorch, amelyekkel konnyen kezelhetdk, elemez-
hetdk és vizualizalhat6k nagyobb mennyiségi részvényadatok.
Kodszerkesztéként a Google Colab-ot hasznaltuk, amely bizto-
sitja a szamitasi erdforrasokat (példaul GPU és TPU hozzafé-
rést), igy nagyobb méretid adathalmazok is kezelhetSk anélkiil,
hogy a sajat gép erdforrasait megterhelné. A vizsgalat idétarta-
ma 2017 janudr 1.-t61 2024 janudr 1.-ig tart (a gépi tanulasi algo-
ritmusok ezenfeltl a 1996. janudr 1.-t61 2017. december 31.-ig
tart6 idészak adataival lettek betanitva). A kutatasban harom
indikator (SMA, MACD, Momentum), valamint harom mes-
terséges intelligencia algoritmus (Linedris Regresszio, Ridge
Regresszio, LSTM) backtestjét hajtottuk végre. A backtest so-
ran arra vagyunk kivancsiak, hogy ezek a megkozelitések ho-
gyan teljesitettek volna a vizsgalt idétartamban.

Mindegyik médszer backtestjénél egy virtualis, $10000 kez-
déegyenleget helyeztiink el. A kutatas f6 kérdése, hogy a fel-
sorolt stratégiak koziil melyikkel értiik volna el a legnagyobb
profitot, tehdt a zaréegyenleg maximalizalasa volt a cél. Ezen
talmenden arra is kivancsiak voltunk, hogy az egyes stratégiak-
nak mekkora volt az dtlagos hozama, és ez milyen kockazattal,
vagyis szordssal parosult.

KOVETKEZTETES

A backtest elvégeztével felallithaté az a lista, amely rangsorol-
ja ezeket stratégidkat a zar6egyenlegek maximalizalasa szem-
pontjabol. Az 2. tdblazat tartalmazza a tiz legnagyobb hozamot
elérd stratégidt a vizsgalt részvényeknél.

2. tablazat: A legjobban teljesité stratégiak

Helyezés Stratégia Zér(;):]gsyi():)n leg Részvény
1. Linedris Regresszio $67 538.61 AAPL
2. Ridge Regresszio $57 828.53 MSFT
3. Momentum $53 974.05 AAPL
4. MACD $51 184.07 AAPL
5. Ridge Regresszio $46 993.55 AAPL
6. SMA $37 684.28 MSFT
7. Linedris Regresszi6 $35 477.41 MSFT
8. MACD $27 268.99 BA
9. Momentum $25 219.68 F
10. SMA $24 629.71 AAPL

Forvas: Sajat szerkesztés
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A tablazatbol lathato, hogy a top tizbe négy darab Al algorit-
mus is bekerult, ezen tiulmenden a két legsikeresebb mind gépi
tanuldsi modell. A kutatasi kérdésre a valasz tehat: A Linedris
Regresszios modellel, az Apple részvénynél értik el a legna-
gyobb profitot. Az LSTM algoritmus gyenge teljesitménye eb-
ben a vizsgdlatban nagy meglepetés, mivel mind kozul ez a
legosszetettebb. Fontos azonban hangsulyozni, hogy rengeteg
olyan tényez6 van az LSTM modell esetében, amely jelentGsen
befolyasolhatja annak teljesitményét. Tobbek kozott megemlit-
het6 a modell tanulasi sebessége, epoch-ok szama, vagy akar a
seed valtoz6 értéke (mar amennyiben kivanjuk rogziteni a mo-
dellt, ennek hidnydban minden futtatdsnal 4j eredményt ka-
punk). Mindezek figyelembevételével az LSTM algoritmusban
tovabbra is nagy potencial rejlik, azonban ennek az algoritmus-
nak a mélyebb tanulmanyozdsa meghaladja a vizsgalat kereteit.

Az 2. abran lathat6 a stratégiak atlagos hozamai és szorasai.
A vizsgalat soran kiszdmoltuk ezeket a mutatokat a Buy&Hold
modszerre is, vagyis amikor az adott részvényt megvasaroljuk
és tartjuk az idGszak végéig.

25%

20,50%  20,47%

20%
0
15% 14,54%
11,72% 11,72%
BRIV e 10,82% 11,28%
10% ,61%
7,04
5,06
5%
2,13
I 1,27
0% . |
MACD Buy&Hold Ridge Regresszi6 ITM
5% mAtlagos hozam  m Szorés -3,03%

2. abra: Stratégiak hozamai és szoérasai.
Forras: Sajat szerkesztés

A kés6bbi elemzésekben érdemes lehet a killonb6z6 koltsége-
ket belekalkuldlni a profitba, ezdltal a zaréegyenleg realisztiku-
sabb lenne. Ehhez jo 6tlet az egyes stratégiakndl a kereskedések
szamanak meghatdrozasa, mivel tobb tranzakcié nagyobb kolt-
séggel jar. Tovabba az indikatorok kilonb6z6é kombinaciéinak
alkalmazasa, valamint ahogy azt mar korabban emlitetttiik, az
LSTM algoritmus hatékonyabb optimalizalasaval és mélyebb
megértésével szintén 1j eredményeket lehetne elérni.
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