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AI-alapú megközelítések a technikai 
elemzésben: Indikátorok és a gépi 
tanulás Vizsgálata
Összefoglalás
A kutatás során hagyományos technikai indikátorokat fogunk 
összevetni mesterséges intelligencia alapú modellekkel. Az in-
dikátorokat több évtizede ismeri a befektetői közösség, azon-
ban a technológiai fejlődésnek hála, a gépi tanulási módszerek 
egyre fontosabb szerephez jutnak. A kutatás fő célja meghatá-
rozni, hogy melyik megközelítéssel lehet nagyobb profitot el-
érni a részvénypiacon. Ehhez három indikátor és mesterséges 
intelligencia algoritmus teljesítményét vizsgáltuk meg öt darab 
amerikai részvény historikus adatain, 2017 január 1. és 2024 
december 31. között, továbbá a gépi tanulási algoritmusok az 
1996. január 1.-től 2017. december 31.-ig tartó időszak adatai-
val lettek betanítva. Az eredményekből látható, hogy a Lineáris 
Regresszió generálta a legnagyobb profitot az Apple részvény 
esetében, azonban érdemes figyelembe venni az ezzel járó koc-
kázatot és a nagyfokú volatilitást.
Kulcsszavak: részvény, technikai elemzés, indikátor, mestersé-
ges intelligencia
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Bevezetés
A pénzügyi piacok kereskedésének története hosszú múltra te-
kint vissza, és már a kezdetektől fogva próbálták az emberek az 
árfolyammozgásokat megjósolni (When-Chuan, 2010).  A kez-
detleges megközelítések egyre fejlettebbé váltak, köszönhetően 
az elmúlt évtizedek információs forradalmának.  A  technikai 
fejlődés egyik jelentős eredménye a mesterséges intelligencia 
(AI) megjelenése, amely a kutatás központi témája. Az AI ala-
pú rendszerek nagy mennyiségű adatot gyorsan és hatékonyan 
képesek feldolgozni, valamint olyan komplex mintázatokat fel-
ismerni, amelyeket az emberi szem és a hagyományos megköze-
lítési módszerek nem tudnak azonosítani. 

Fontos megjegyezni, hogy a technikai elemzés hagyományo-
san indikátorokra épül, azonban az utóbbi években a mester-
séges intelligencia egyre nagyobb szerepet kapott a tőzsdei ke-
reskedésben. (Bartram, 2020) Ez a tanulmány három AI-alapú 
modell és három hagyományos technikai indikátor teljesítmé-
nyét hasonlítja össze a részvénypiacon. 

Technikai elemzés
A  technikai elemzés kétségtelenül nagy népszerűségnek ör-
vend. Elsősorban annak köszönhető, hogy ez a megközelí-
tés nem foglalkozik az összes lehetséges gazdasági, politikai, 
vagy vállalati faktorral, ami befolyásolhatja egy részvény árfo-
lyamát. Így az elemző sok időt és erőforrást tud megspórolni 
(Kirkpatrick, 2007). Lényegét tekintve a jövőbeli árfolyammoz-
gások meghatározására használatos. Ehhez múltbéli adatokra, 
jellemzően az árra és a volumenre van szükség. Az elemzések 
során fontos szerepe van a matematikai képletek alapján kiszá-
mítható indikátoroknak és a grafikonról leolvasható különféle 
alakzatoknak (Park, 2004). 

Az  elmélet azt mondja, hogy minden befolyásoló tényező 
automatikusan beépül a részvény árába. Ezzel el is érkeztünk 
a technikai elemzés első alapelvéhez, mely szerint a piac min-
dent diszkontál. A technikai elemzők szerint ez a legfontosabb 
mutató, amelyre szükségünk lehet az elemzések elvégzéséhez. 
Továbbá az árfolyammozgások vizsgálatával nagyon egyszerű-
en megállapíthatjuk a kereslet és kínálat alakulását: ha a keres-
let meghaladja a kínálatot, akkor az árak emelkednek, hasonló-
képpen, ha nagyobb a kínálat a piacon, mint a kereslet, akkor 
az árak csökkennek. Minden technikai elemző egyetért abban, 
hogy ezeket a mozgásokat valamilyen gazdasági tényező okoz-
za, azonban ők maguk csak az ezt tükröző grafikonokkal foglal-
koznak (Murphy, 1999). 

A technikai elemzésnek viszonylag sok kritikusa van, akik a 
vizsgálat során felmerülő nagyfokú szubjektivitást kifogásol-
ják (Scott, 2016). Burton Malkiel közgazdász professzor szerint 
sok logikai érv szól a technikai elemzés ellen. Úgy véli, hogy 
az események túl gyorsan történnek ahhoz, hogy a diagram-
mok olvasásával le tudjuk őket követni. Mire vételi jelzést ka-
punk, már túl késő és ugyanez vonatkozik az eladási jelzésekre 
is. Továbbá felmerül a kérdés, ha mindenki ugyanazon séma 
alapján kereskedik, hogyan tudna az egyik fél a másik fölé ke-
rekedni (Malkiel, 2007). Mindazonáltal nem hagyhatjuk figyel-
men kívül azokat az empirikus tanulmányokat, melyek szerint 
a technikai elemzéssel lehetséges nyereséget termelni (Chopra, 
1991; Brock, 1992).

Mesterséges intelligencia
A  mesterséges intelligencia szerepe jelentősen nőtt minden 
iparágban. A  pénzügyi szektorban alkalmazott AI modellek 
többsége gépi tanulási kategóriába sorolható, amelynek beta-
nítása emberi felügyelet igényel és statisztikai technikákon ala-
pulnak (Bartram, 2020). A befektetők az AI-nak köszönhető-
en megalapozottabb döntéseket képesek hozni, ami magasabb 
profitot termel, valamint segít csökkenti a kockázatot. A keres-
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kedési algoritmusok gépi tanulási technikákkal kiegészítve, 
ezek az algoritmusok képesek pénzügyi jelentések, záróárak, 
újságcikkek, közgazdasági mutatók stb. valós idejű elemzésére. 
Az AI-nak nem jelent problémát a bonyolult összefüggések fel-
ismerése, ezáltal sokkal pontosabb előrejelzéseket készítenek, 
valamint az emberi hibát minimalizálja. Mindazonáltal ügyelni 
kell a tanulási fázisban betáplált adatok minőségére ugyanis hi-
bás, rossz minőségű adatokkal téves következtetésre jut az algo-
ritmus (Chowdhury, 2019).

Anyag és módszertan
Indikátorok
A kutatásban használt indikátorok első csoportja az úgyneve-
zett trendkövető indikátorok, melyeknek elsődleges feladata a 
trendek előrejelzése. Egyik nagy hátrányuk, hogy jellegükből 
adódóan késői jelzést adnak a vételi és eladási pozíciókhoz. 
A  három leggyakoribb mozgóátlag: az egyszerű mozgóátlag 
(SMA), az exponenciális mozgóátlag (EMA) és a súlyozott moz-
góátlag (WMA). Annak ellenére, hogy az SMA az egyik legegy-
szerűbb indikátor, elég nagy népszerűségnek örvend a kereske-
dők körében (Tóth, 2023). Számítása nagyon egyszerű, ahogy 
az (1) képlet alapján látható a vizsgált időszak napi árfolyamait 
összeadjuk majd elosztjuk az eltelt napok (n) számával.

�

(1)

A gyakorlatban úgy működik, hogyha az árfolyam a mozgóát-
lagot alulról metszi akkor vételi jelzést kapunk, ha felülről, ak-
kor pedig eladásit. Minél hosszabb időszakra alkalmazzuk, an-
nál pontosabb jelzéseket kapunk (Tóth., 2023).

A projekt során alkalmazott másik indikátor az úgynevezett 
MACD. Ez egy oscillátor típusú mutató, vagyis egy központi vo-
nal által fluktuál. Három mozgóátlag divergáló és konvergáló 
mozgását adja vissza, azonban a grafikonon csak két vonalat áb-
rázolunk ezek közül. Az egyik vonal az MACD vonal, melynek 
meghatározása általában egy 26 napos, valamint egy 12 napos 
exponenciálisan súlyozott mozgóátlag különbsége. A másik az 
úgynevezett szignál vonal, ami nem más, mint az MACD vonal 9 
napos exponenciálisan súlyozott mozgóátlaga. Működésének a 
lényege a következő: ha az MACD a szignálvonal alá esik akkor 
azt egy eladási jelzésként kell értelmezni, ha pedig az MACD 
alulról áttöri a szignál vonalat, akkor az belépési pontot jelent 
(Kecskeméti, 2006).

Végül a harmadik alkalmazott indikátor a Momentum. 
Elsősorban az árfolyam változásának a mértékét mutatja egy 
meghatározott időintervallum alatt. Lényege, hogy a mai árat 
hasonlítjuk egy korábbi árhoz (Achelis, 2013). Az indikátor kal-
kulációját az alábbi (2) képlet alapján lehet elvégezni.

� (2)

Számítása nagyon egyszerű, a mai átlagárból kivonjuk a moz-
góátlagot (a projektben ez 14 nap), és ezt különbséget osztani 
kell a választott mozgóátlaggal, végül meg kell szorozni 100-
al. A grafikonon fel kell venni egy központi viszonyítási pontot 
melynek az értéke 100. A 10-15%-os elmozdulás egy esetleges 

trendváltozás bekövetkeztét jelezheti. A görbe mélypontját vé-
teli jelként kell értelmezni, ebből kifolyólag a csúcsot pedig el-
adási pontként (Kecskeméti, 2006).

Lineáris Regresszió
A lineáris regresszió egy alapvető és gyakran használt felügyelt 
gépi tanulási algoritmus. Lényege, hogy x bemeneti változó 
alapján predikciót készítsen a kimeneti, más szóval y célváltozó-
ra. A bemeneti változó kapcsolatban áll a kimeneti változóval, 
tehát ha az x értéke módosul, annak hatása lesz az y változóra. 
Regressziós modell használata során a célunk, hogy megtalál-
juk azt az egyenest, amelyre legjobban illeszkednek a kimene-
ti változók (Bruce, 2020). Alább a lineáris regresszió képlete 
alább látható.

Y = b0 + b1X	–
	– b0 = konstans, az a pont ahol 
	– b1 = a regressziós vonal meredeksége
	– X = bemeneti változó (független változó)
	– Y = kimeneti változó (függő változó)
	–
Az adatok nagyrésze általában nem esik rá a regressziós vo-

nalra, így hibák keletkeznek (ei). Ahhoz, hogy megkapjuk a leg-
jobban illeszkedő egyenest, meg kell találnunk azokat a b0 és  
b1 értékeket, melyeknél a hibák a legkisebbek. Másszóval mini-
malizálnunk kell a modell illeszkedését mutató reziduális négy-
zetösszeget. Ennek kiszámításához a legkisebb négyzetek mód-
szerét (OLS) használjuk (Hunyadi, 2019). A kalkuláció során 
használt képletek és összefüggések:

� (4)

�
(5)

� (6)

Amikor értékelni akarjuk a modellünk pontosságát, az egyik 
legfontosabb tényező a maradványtagok négyzetösszege. Ezt az 
SSE (Sum of Squares of the Errors) mutatóval szoktuk kifejez-
ni. Minél kisebb az SSE értéke, annál jobban illeszkednek a ki-
meneti változók a regressziós egyenesre (Hunyadi, 2019).

� (7)

Ridge Regresszió
A  lineáris regressziót különféle módszerekkel optimalizálhat-
juk. Az egyik ilyen megoldás az L2 regularizáció alkalmazása, 
amit Ridge Regressziónak nevezünk. Ez  a megközelítés csök-
kenti azoknak az együtthatóknak az értékét, amelyek a lineá-
ris modellt eltérítik, ezáltal elősegíti a regresszió általánosítási 
képességének a növekedését (Mueller, 2024). Alább látható a 
módosított OLS metódus, amelyet L2 regularizációval kibőví-
tettünk.
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� (8)

– λ = regularizációs paraméter

A λ paraméterrel tudjuk szabályozni a büntetési tag mértékét, 
amelyet gyakran hívnak zsugorítási tényezőnek is. Amennyiben 
λ = 0, a büntetési tagnak nincs jelentősége. Fontos kiemelni, 
hogy a büntetési tényező csakis a b1… bn paramétekre vonatko-
zik, tehát a b0 változatlan marad (James, 2013)

Long Short Term Memory (LSTM)
Az LSTM vagy másnéven Hosszú-Rövid Távú Memória a mély, 
visszatérő neurális hálózatok (RNN) egyik csoportja. Lényeges 
tulajdonsága, hogy képes legyen hosszútávon különböző ada-
tok tárolására. Miután ezek az adatok felhasználásra kerül-
tek, az algoritmus szelektálja, másszóval „elfelejti” őket. Fontos 
hangsúlyozni, hogy ez a folyamat emberi beavatkozás nélkül 
történik, vagyis a hálózat saját maga tanulja meg ezen döntések 
meghozatalát (Goodfellow, 2016). 

Az  LSTM egy összetett rendszer, amely különféle memória 
blokkokból épül fel. Ezek a memória blokkok három egységből 
állnak: bemeneti kapu, kimeneti kapu, felejtő kapu. A hosszú 
távú memóriát cellaállapotnak (cell state) is nevezik. A  felej-
tőkapu,  meghatározza, hogy a cellaállapotból mely ada-
tokat kell szelektálni. A bemeneti kapu,  azt szabályozza, 
hogy mely információkat kell hozzáadni a hosszú távú állapot-
hoz, míg a kimeneti kapu, , azért felel, hogy az aktuális 
időpillanatban mely adatokat kell előállítani. Az  LSTM cella 
felépítését az 1. ábra mutatja be, ahol  az aktuális input, 

 és  pedig a memóriacella aktuális és előző ál-
lapotát jelölik. A   és  az aktuális és előző rejtett 
állapotokat mutatják (Diniz, 2024).

1. ábra: LSTM cella váza.
Forrás: (Diniz, 2024)

Mintavétel
A vizsgálat során öt részvény historikus adatait használtuk fel. 
Ezeket az adatokat a Yahoo Finance API-n keresztül értük el. 
Emiatt nem szükséges a fájlokat letölteni majd később beim-
portálni, hanem közvetlenül a kódszerkesztőbe érkeznek az 
adatok. A felhasznált részvények rövid összefoglalóját az 1. táb-
lázat tartalmazza.

1. táblázat: A vizsgált részvények adatai

Részvény 
rövidítése Cégnév Szektor

AAPL Apple Inc. IT

IBM International Business 
Machines Inc. IT

MSFT Microsoft Corporation IT

F Ford Motor Company Járműipar

BA The Boeing Company Repülőgépipar

Forrás: Saját szerkesztés

Az elemzést Python programozási nyelvvel hajtottuk végre. 
A választást az indokolta, hogy a Python olyan magas színvonalú 
könyvtárakkal rendelkezik, mint a Pandas, NumPy, Matplotlib, 
Scikit-learn, Pytorch, amelyekkel könnyen kezelhetők, elemez-
hetők és vizualizálhatók nagyobb mennyiségű részvényadatok. 
Kódszerkesztőként a Google Colab-ot használtuk, amely bizto-
sítja a számítási erőforrásokat (például GPU és TPU hozzáfé-
rést), így nagyobb méretű adathalmazok is kezelhetők anélkül, 
hogy a saját gép erőforrásait megterhelné. A vizsgálat időtarta-
ma 2017 január 1.-től 2024 január 1.-ig tart (a gépi tanulási algo-
ritmusok ezenfelül a 1996. január 1.-től 2017. december 31.-ig 
tartó időszak adataival lettek betanítva). A kutatásban három 
indikátor (SMA, MACD, Momentum), valamint három mes-
terséges intelligencia algoritmus (Lineáris Regresszió, Ridge 
Regresszió, LSTM) backtestjét hajtottuk végre. A backtest so-
rán arra vagyunk kíváncsiak, hogy ezek a megközelítések ho-
gyan teljesítettek volna a vizsgált időtartamban.

Mindegyik módszer backtestjénél egy virtuális, $10000 kez-
dőegyenleget helyeztünk el. A kutatás fő kérdése, hogy a fel-
sorolt stratégiák közül melyikkel értük volna el a legnagyobb 
profitot, tehát a záróegyenleg maximalizálása volt a cél. Ezen 
túlmenően arra is kíváncsiak voltunk, hogy az egyes stratégiák-
nak mekkora volt az átlagos hozama, és ez milyen kockázattal, 
vagyis szórással párosult. 

Következtetés
A backtest elvégeztével felállítható az a lista, amely rangsorol-
ja ezeket stratégiákat a záróegyenlegek maximalizálása szem-
pontjából. Az 2. táblázat tartalmazza a tíz legnagyobb hozamot 
elérő stratégiát a vizsgált részvényeknél.

2. táblázat: A legjobban teljesítő stratégiák

Helyezés Stratégia Záróegyenleg 
(USD) Részvény

1. Lineáris Regresszió $67 538.61 AAPL

2. Ridge Regresszió $57 828.53 MSFT

3. Momentum $53 974.05 AAPL

4. MACD $51 184.07 AAPL

5. Ridge Regresszió $46 993.55 AAPL

6. SMA $37 684.28 MSFT

7. Lineáris Regresszió $35 477.41 MSFT

8. MACD $27 268.99 BA

9. Momentum $25 219.68 F

10. SMA $24 629.71 AAPL

Forrás: Saját szerkesztés
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A táblázatból látható, hogy a top tízbe négy darab AI algorit-
mus is bekerült, ezen túlmenően a két legsikeresebb mind gépi 
tanulási modell. A kutatási kérdésre a válasz tehát: A Lineáris 
Regressziós modellel, az Apple részvénynél értük el a legna-
gyobb profitot. Az LSTM algoritmus gyenge teljesítménye eb-
ben a vizsgálatban nagy meglepetés, mivel mind közül ez a 
legösszetettebb. Fontos azonban hangsúlyozni, hogy rengeteg 
olyan tényező van az LSTM modell esetében, amely jelentősen 
befolyásolhatja annak teljesítményét. Többek között megemlít-
hető a modell tanulási sebessége, epoch-ok száma, vagy akár a 
seed változó értéke (már amennyiben kívánjuk rögzíteni a mo-
dellt, ennek hiányában minden futtatásnál új eredményt ka-
punk). Mindezek figyelembevételével az LSTM algoritmusban 
továbbra is nagy potenciál rejlik, azonban ennek az algoritmus-
nak a mélyebb tanulmányozása meghaladja a vizsgálat kereteit.

Az 2. ábrán látható a stratégiák átlagos hozamai és szórásai. 
A vizsgálat során kiszámoltuk ezeket a mutatókat a Buy&Hold 
módszerre is, vagyis amikor az adott részvényt megvásároljuk 
és tartjuk az időszak végéig. 

2. ábra: Stratégiák hozamai és szórásai.
Forrás: Saját szerkesztés

A későbbi elemzésekben érdemes lehet a különböző költsége-
ket belekalkulálni a profitba, ezáltal a záróegyenleg realisztiku-
sabb lenne. Ehhez jó ötlet az egyes stratégiáknál a kereskedések 
számának meghatározása, mivel több tranzakció nagyobb költ-
séggel jár. Továbbá az indikátorok különböző kombinációinak 
alkalmazása, valamint ahogy azt már korábban említettük, az 
LSTM algoritmus hatékonyabb optimalizálásával és mélyebb 
megértésével szintén új eredményeket lehetne elérni.
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