This study investigates the linear relationships between key financial performance indicators Return on Assets (ROA), Earnings per Share (EPS), Return on Equity (ROE), and Profit Margin (PM) and market prices of automotive companies. A robust dataset from the ORBIS database covering the period from 2019 to 2023 served as the foundation for conducting a Pearson correlation analysis. Findings indicated statistically significant yet moderate correlations between the examined financial indicators and market prices. EPS demonstrated the strongest positive relationship with market valuations, reflecting its significance in investor assessments. ROA and PM revealed weaker but still meaningful correlations, highlighting their moderate relevance. ROE showed the weakest correlation with market prices. Additionally, significant intercorrelations among financial indicators themselves were observed. These insights establish a foundational empirical framework beneficial for future advanced predictive analyses within the automotive industry.
XIII. ÉVFOLYAM 2025. SPECIAL ISSUES 2. 65-71
DOI: 10.24387/CI.SI.2025.2.11
A cikk megtekinthető: http://controllerinfo.hu/wp-content/uploads/2025/12/CI_különszám_2025_2_11.pdf
REFERENCES
CAPPELLO, G. – DEFEUDIS, A. – GIANNINI, V. – MAZZETTI, S. & REGGE, D. (2023): Artificial intelligence in oncologic imaging. In Multimodality Imaging and Intervention in Oncology (pp. 585-597). https://doi.org/10.1007/978-3-031-28524-0_24
COHEN, J. – COHEN, P. – WEST, S. G. & AIKEN, L. S. (2013): Applied multiple regression/correlation analysis for the behavioral sciences. Routledge.
GÁL, Z. (2016): Pénzügyi piacok a globális térben. https://doi.org/10.1556/9789630598118
GALIMBERTI, C. & REPETTO, M. (2023): Neural Networks and Deep Learning. In Impact of Artificial Intelligence in Business and Society: Opportunities and Challenges (pp. 58-81). https://doi.org/10.4324/9781003304616-5
GJERSTAD, S. & SMITH, V. L. (2009): MONETARY POLICY, CREDIT EXTENSION, AND HOUSING BUBBLES: 2008 AND 1929. Critical Review, 21(2-3), 269-300. https://doi.org/10.1080/08913810902934117
HASABALLAH, A. S. – ZENAD, Y. S. & SHLAKA, J. K. (2019): The role of fundamental analysis in determining the market value of hospitality, tourism and company shares [Article]. African Journal of Hospitality, Tourism and Leisure, 8(4). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071593715&partnerID=40&md5=daa38c2fbe4c83f07e18582e1ce9232f
LEWELLEN, J. (2004): Predicting returns with financial ratios. Journal of Financial Economics, 74(2), 209-235. https://doi.org/https://doi.org/10.1016/j.jfineco.2002.11.002
LI, Z. – DENG, G. & CHE, H. (2021): Patent-Based Predictive EPS on Increasing Investment Performance of China Stock Market. Proceedings of 2021 IEEE International Conference on Power Electronics, Computer Applications, ICPECA 2021,
MATKARIMOV, B. – BARLYBAYEV, A. – & KARIMOV, D. (2024): Enhancing Analytical Precision in Company Earnings Reports through Neurofuzzy System Development: A Comprehensive Investigation [Article]. Journal of Electrical and Computer Engineering, 2024, Article 8515203. https://doi.org/10.1155/2024/8515203
MOHAMED, E. A. – AHMED, I. E. – MEHDI, R. & HUSSAIN, H. (2021): Impact of corporate performance on stock price predictions in the UAE markets: Neuro-fuzzy model. Intelligent Systems in Accounting, Finance and Management, 28(1), 52-71. https://doi.org/https://doi.org/10.1002/isaf.1484
OMRAN, M. F. C. (2009): Price Earnings Multiples as Forecasters of Short Term Stock Returns in Egypt. Journal of Economic and Administrative Sciences, 25(1), 47-66. https://doi.org/10.1108/10264116200900003
PROHASKA, Z. – URODA, I. & SULJIC, S. (2011): SP A computer program for fundamental analysis of stocks. MIPRO 2011 – 34th International Convention on Information and Communication Technology, Electronics and Microelectronics – Proceedings,
RATNER, B. (2009): The correlation coefficient: Its values range between +1/−1, or do they? Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139-142. https://doi.org/10.1057/jt.2009.5
RUBÓCZKY, I. (1999): Tőzsdei fogalomtár/összeáll. Czékus Mihály (Könyvismertetés). Vezetéstudomány-Management and Business Journal, 30(4), 52-53.
SILPA, K. S. – ARYA MOL, J. & AMBILY, A. S. (2017): A study on fundamental analysis of selected IT companies listed at NSE [Article]. Journal of Advanced Research in Dynamical and Control Systems, 9(Special Issue 5), 1-10. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030679648&partnerID=40&md5=9b7195a47403afa06c5c24747afad93c
SON, P. V. H. & DUONG, L. T. (2024): Research on applying machine learning models to predict and assess return on assets (ROA) [Article]. Asian Journal of Civil Engineering, 25(5), 4269-4279. https://doi.org/10.1007/s42107-024-01046-4
SPRITZER, A. S. & FREITAS, C. M. D. S. (2006): A visual tool to support technical analysis of stock market data. Proceedings of the Workshop on Advanced Visual Interfaces,
TRIPATHI, A. – MATHURE, J. – DEOTARSE, S. – RAI, D. & GADHIKAR, L. (2023): Linear Regression Approach for Stock Chart Pattern Recognition. 5th Biennial International Conference on Nascent Technologies in Engineering, ICNTE 2023,
TUTCU, B. – KAYAKUS, M. – TERZIOGLU, M. – ÜNAL UYAR, G. F. – TALAS, H. & YETIZ, F. (2024): Predicting Financial Performance in the IT Industry with Machine Learning: ROA and ROE Analysis. Applied Sciences, 14(17), 7459. https://www.mdpi.com/2076-3417/14/17/7459
VASANTHA, S. – DHANRAJ, V. & VARADHARAJAN, R. (2012): Stock price movement through technical analysis: Empirical evidence from the information technology sector [Article]. Indian Journal of Finance, 6(10), 4-17. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919681936&partnerID=40&md5=33f209829963623fffb728abdf840164
WIIAVA, A. Y. – FATICHAH, C. & SAIKHU, A. (2022): Stock Price Prediction with Golden Cross and Death Cross on Technical Analysis Indicators Using Long Short Term Memory. ICOIACT 2022 – 5th International Conference on Information and Communications Technology: A New Way to Make AI Useful for Everyone in the New Normal Era, Proceeding,